

Flame Spray Technologies

POWDERS

THERMAL SPRAY CONSUMABLES GUIDE

Thermal Spray Consumables Guide

Conv	version Charts ————————————————————————————————————	2
	Powders ————————————————————————————————————	. 3
	Wires ————————————————————————————————————	29
	Masking ————————————————————————————————————	39
	Sealer ————————————————————————————————————	43
	Spare Parts	45

PARTICLES SIZE Conversion Chart						
MICRON	MESH					
38	400					
45	325					
53	270					
63	230					
75	200					
90	170					
106	140					
125	120					
150	100					

BOND STRENGTH Conversion Chart						
MPA	Psi					
10	1450					
25	3626					
30	4351					
35	5076					
40	5802					
50	7252					
60	8702					
70	10153					

COATING THICKNESS Conversion Chart						
MICRON	mil					
10	0.4					
20	0.8					
50	2.0					
100	3.9					
200	7.9					
300	11.8					

HOSE LENGTH Conversion Chart						
Metric	Imperial					
4.5m	15ft					
5m	16ft					
6m	20ft					
9m	30ft					
15m	50ft					

Note: conversions are approximations only

2 | CONVERSION CHARTS 2020

Index

Cross Reference List (chemistry only)	Z
Abradables	8
Aluminum Oxide	8
Chrome Carbide	10
Chrome Oxide	11
Cobalt Based Alloys	12
Copper Based Alloys ————————————————————————————————————	14
Iron Based Alloys ————————————————————————————————————	15
Molybdenum Based Alloys	16
Nickel Based Alloys	16
Nickel S/F Alloys	19
Titanium	21
Titanium Oxide ————————————————————————————————————	22
Tungsten Carbide	23
Yttrium Oxide	26
Zirconium Oxide	26

CROSS REFERENCE LIST (chemistry only)						
Powder Type	FST p/n	Metco	Praxair	Amperit	PAC	Page Nr.
Abradables						8
AlSi-Polyester	M-111	601	AL 228 AL 229	_	905-3	8
ZrO2-Y2O3-Poly-hBN	M-113	2395	_	_	_	8
ZrO2-Y2O3-Poly	M-114	2460	_	_	_	8
Ni Graphite 75/25	M-390	307	_	_	_	8
Aluminum Oxide						8
Al ₂ O ₃	C-506/507	105 6103	ALO 101 ALO 114	740	705	8
Al ₂ O ₃ -TiO ₂ 97/3	C-328	101 6203	ALO 105 ALO 159	742	701	8
Al ₂ O ₃ -TiO ₂ 87/13	C-338	130 6221	ALO 187 ALO 188	744	730	9
Al ₂ O ₃ -TiO ₂ 87/13	C-339	130 6221	ALO 187 ALO 188	744	730	9
Al ₂ O ₃ -TiO ₂ 60/40	C-342	131	ALO 121	745	731	9
Al ₂ O ₃ -MgO 74/26	C-351	_	_	_	_	10
Chrome Carbide						10
CrC-NiCr 80/20	K-804	7101 7107 7102 7103 7105	-	578	-	10
CrC-NiCr 75/25	K-854	7201 7202 7203 7205	1375 CRC 300	588 584	-	10
CrC-CoNiCrAlY	K-880	_	_	594	-	10
Chrome Oxide						11
Cr ₂ O ₃	C-604/607	106 6156	Metco 6445 6155, 6156, 6416 Amdry 6415 ,6420	704 707	1106	11
Cr ₂ O ₃ /SiO ₂ /TiO ₂	C-650	136 6462	CRO 192	716	732	11
Cr2O3 TiO2 97/3	C-667	-	_	_	_	11
Cr ₂ O ₃ TiO ₂ 75/25	C-670	6485	_	712	-	12
Cr2O3 TiO2 60/40	C-677	6483	_	_	_	12
Cobalt Based Alloys						12

CROSS REFERENCE LIST (chemistry only)						
Powder Type	FST p/n	Metco	Praxair	Amperit	PAC	Page Nr.
T-800	M-499	68 3001 4800	CO 111 1248	342	T800	12
T-400	M-494	66 3002	CO 109 1247	340	T400	12
Alloy 12	M-481	8102	_	_	_	13
Alloy 6	M-484	4060 8101	CO 106 1256	344	6 46	13
Alloy 1	M-487	8100	_	_	_	13
Copper Based Alloys						14
Pure Copper	M-901 M-901P	55 1007	CU 105 CU 159	_	10	14
CuAlFe (Al-Bronze)	M-950	51 1004	CU 114 CU 104	_	16	14
CuAl (Al-Bronze)	M-952	_	_	_	_	14
Iron Based Alloys						15
316L Stainless	M-684	41 1003	FE 101 1236	377	96	15
431 Stainless	M-687	42	_	_	97	15
420 Stainless	M-642	1002	_	_	_	15
Ultra Hard Steel	M-688	_	_	_	_	15
Molybdenum Based Alloys						16
Mo	M-801	63 4063	MO 102 MO 103 1293	105 106 109	118	16
Mo-25NiS/F	M-855	1371	_	_	902	16
MB NiCr	M-880	_	_	_	-	16
Nickel Based Alloys						16
Pure Ni	M-300	56	NI 101 NI 118 1166	175	900	16
NiCr 80/20	M-301	43 5640 4535	NI 105 NI 106 NI 107 1262	250 251	98	17
NiAl 95/5	M-358	480	NI 185 Ni 970	280 281	906	17
Alloy 625	M-325	1005	NI 328 1265	380	625	17

CROSS REFERENCE LIST (chemistry only)						
Powder Type	FST p/n	Metco	Praxair	Amperit	PAC	Page Nr.
Alloy 718	M-328	1006	NI 202 1278	407	718	17
Alloy C-276	M-341	4276	NI 544 1269	409	C276	18
Alloy C-22	M-342	_	_	-	_	18
Alloy X	M-344	_	_	_	_	18
Nickel S/F Alloys						19
NiCrSiB (59-64 HRC)	M-771	15 2001	-	-	-	19
NiCrSiB (50-55 HRC)	M-770	14	_	_	_	19
NiCrSiB (35-40 HRC)	M-772	12	_	-	-	19
NiCrSiBCuMo (58-64 HRC)	M-778	16	_	-	_	20
NiCrSiB (30-35 HRC)	M-774	-	_	-	_	19
NiCrSiB (35-43 HRC)	M-775	-	_	-	-	19
NiCrSiB (45-50 HRC)	M-776					20
NiCrSiB (55-60 HRC)	M-773					19
NiCrSiBW (55-58 HRC)	M-781					20
NiCrSiBW (57-61 HRC)	M-782					20
NiCr/SF WC	M-733					20
NiCr/SF WC-Co	M-735	31C				21
NiCr/SF WC	M-737					21
Titanium						21
Pure Ti	M-222	4010	-	155	-	21
Ti 6Al 4V	M-223					21
Pure Ti	M-224					22
Ti 6Al 4V	M-225					22
Titanium Oxide						22
TiO ₂	C-408	102	-	782	702	22
Tungsten Carbide						23
WC-Co 88/12	K-624	3101 3106 3102 3103 5105	1342 WC 727	518	125 126 127	23

CROSS REFEREN	CE LIST (ch	emistry	only)			
Powder Type	FST p/n	Metco	Praxair	Amperit	PAC	Page Nr.
WC-Co 83/17	K-674	3201 3202 3203 5143	1343 WC 729	526	200	24
WC-Co-Cr 86/10/4	K-647 K-648	5847 3652 3653 3655 3654	1350 WC 731	558 557	-	24
WC-Co-Cr 86/10/4	K-646	5843 3903	WC 496	554	_	24
WC-Ni 88/12	K-611	330	1310 WC 791	547	-	23
WC-Ni 83/17	K-612	3501 3502 3503 3505	1310 WC 724	547	-	23
WC-CoCrNi 85/9/5/1	K-665	3601 3602 3603 3604				25
WC-CrC-Ni 73/20/7	K-607	3701 3707 3702-1 3703	1356 WC 733	551		26
Yyttrium Oxide						26
Y2O3	C-200	6035 6015	YO 118 YO 125	849	2100	26
Zirconium Oxide						26
ZrO ₂ -Y ₂ O ₃	C-297			825		26
ZrO ₂ -Y ₂ O ₃	C-295	204 231 234	ZRO 182 AI 1075 1484	827 831 832	2008	27
ZrO ₂ -22MgO	C-234	210	ZRO 103		810	27
ZrO ₂ -5CaO	C-241	201				27

ABRADABLES									
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications					
AlSi-Polyester	Si 12.0% Polyester 40.0% Al Bal. Blend	M-111.92	-125 +12 μm	 Plasma. Premium Silicon Aluminum and Polyester powder. Quality abradable coatings for clearance control coatings in aircraft engines. Application can also be found in turbo charges and land based turbines. Useful up to 325°C (620°F). 					
ZrO ₂ Y ₂ O ₃ Polyester	ZrO_2 Bal. Y_2O_3 7,5% Polyester 4.0% Blend	M-114.985	-180 +10 μm Average: 70 μm	 Coatings of these materials can be applied with high porosity levels. Sprayable to higher levels than normal Zirconia Coatings. 					
ZrO ₂ Y ₂ O ₃ Polyester hBN	ZrO ₂ Bal. Y ₂ O ₃ 7,5% Polyester 4.5% hBN 0.7% Blend	M-113.985	-180 +10 μm Average: 70 μm	 Coatings of these materials can be applied with high porosity levels. Sprayable to higher levels than normal Zirconia Coatings. 					
Ni Graphite 75/25	Ni Bal. C 25.0%	M-390.91	-106 +45 μm	 Coating service temperature capability approaching 480 °C. Suitable for abradable coatings to rub against nickel alloy and steel. Used in the glass industry as an low friction protective coating. 					

ALUMINUM OXIDE									
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications					
Al ₂ O ₃	$Al_2O_3 > 99.5\%$ Fused & Crushed	C-506.21	-25 +5 μm -45 +5 μm	 Good for abrasion, erosion and sliding wear applications Good in alkalis and acid environments 					
		C-506.25	-45 +22 μm	 Excellent dielectric properties Useful up to 1600°C (3000°F) Grind only with silicon carbide or diamond wheels. 					

ALUMINUN	ALUMINUM OXIDE				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Al ₂ O ₃	$Al_2O_3 > 99.9\%$ Spheridized	C-507.02 C-507.17 C-507.23 C-507.32	-20 +5 μm -38 +10 μm -45 +15 μm -53 +15 μm	 High Purity Aluminium Oxide. Good for abrasion, erosion and sliding wear applications. Good in alkalis and acid environments. Excellent dielectric properties. Useful up to 1600°C (3000°F). Grind only with silicon carbide or diamond wheels. 	
Al ₂ O ₃ -TiO ₂ 97/3	Al ₂ O ₃ 97.0% TiO ₂ 3.0% Fused & Crushed	C-328.01 C-328.25	-25 +5 μm -45 +22 μm	 Coatings are recommended for resistance to wear by abrasive grains, hard surfaces, fiber and thread, fretting, cavitation and particle erosion. Resistance top cavitation, and to the effects of molten zinc, aluminium and copper. Useful in the textile industry on any machine element application which comes in contact with fibers and threads. 	
Al ₂ O ₃ -TiO ₂ 87/13	Al ₂ O ₃ 87.0% TiO ₂ 13.0% Fused & Crushed	C-338.01 C-338.25	-25 +5 μm -45 +22 μm	Similar to C-328, but less hard and less brittle	
Al ₂ O ₃ -TiO ₂ 87/13	Al ₂ O ₃ 87.0% TiO ₂ 13.0% Blend	C-339.01 C-339.25	-25 +5 um -45 +22 μm	Similar to C-338Different morphology	
Al ₂ O ₃ -TiO ₂ 60/40	Al ₂ O ₃ 60.0% TiO ₂ 40.0% Fused & Crushed	C-342.01 C-342.25	-22 +5 um -45 +22 μm	 Chemical processing industry to resist weak acidic environments Textile manufacturing equipment and tooling Pump components, shaft sleeves and mechanical seals used in a variety of industries. 	

ALUMINUM OXIDE					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Al ₂ O ₃ -MgO 74/26	Al ₂ O ₃ 74.0% MgO 26.0% HOSP	C-351.45 C-351.52	-63 +10 μm -75 +20 μm	 Spinel High thermal shock resistance. Because of resistance to wetting by molten aluminium many applications in the aluminium industry can be found. Commonly used for the coating of oxygen sensors for gas erosion resistance and gas permeability control. 	

CHROME CA	CHROME CARBIDE				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
CrC-NiCr 80/20	NiCr 20.0% CrC Bal. Agglomerated & Sintered	K-804.17 K-804.23	-38 +10 μm -45 +15 μm	 HVOF, Plasma Useful up to 870°C (1600°F) Higher hardness than K-854.23 Good corrosion, abrasion, particle erosion, fretting and cavitation resistance Good hot gas corrosion resistance Excellent for high temperature wear applications Best finished by wet grinding. 	
WC-CrC-NiCrCo 45/37/18	W Bal. Cr 41.0% Ni 11,5% Co 7.0% C 8.0% Agglomerated & Sintered	K-810.17	-38+10 μm	 HVOF Usefull up to 700 C Dense, oxidation and erosion resistant coatings Good hot gas corrosion resistance Cost efficient due to lower density then WC based materials 	
CrC-NiCr 75/25	NiCr 25.0% CrC Bal. Agglomerated & Sintered	K-854.17 K-854.23	-38 +10 μm -45 +15 μm	 HVOF, Plasma Useful up to 870°C (1600°F) Good corrosion, abrasion, particle erosion, fretting and cavitation resistance Good hot gas corrosion resistance Excellent for high temperature wear applications Higher DE than K-804.22 Best finished by wet grinding. 	

CHROME CARBIDE					
Powder Type	Nom.C	omposition	FST p/n	Size Range	Typical Properties and Applications
CrC-CoNiCrAlY 75/25	Co Ni Al Y C Cr	9.0% 8.0% 2.0% 0.15% 9.5% Bal. merated &	K-880.17 K-880.23	-38 +10 μm -45 +15 μm	 HVOF Useful up to 1000°C (1800°F) Excellent wear and erosion resistance up to 1000°C (1800°F) Better oxidation resistance than CrC-NiCr Used for furnace roll in steel industry and turbine components.

CHROME O	CHROME OXIDE					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
Cr ₂ O ₃	Cr ₂ O ₃ > 99.8% Reaction Sintered	C-604.03 C-604.151 C-604.25	-25 +10 μm -30 +10 μm -45 +22 μm	 Plasma Hard, dense wear resistant coating Insoluble in acids, alkalis and alcohol Useful up to 540°C (1000°F) Excellent engraving properties Used for anilox rolls, pump seal areas, wear rings etc. Grind only, use silicon carbide or diamond wheels. 		
Cr ₂ O ₃	$Cr_2O_3 > 99.5\%$ Fused & Crushed	C-607.01 C-607.25	-25 +5 μm -45 +22 μm	Same a C-604Different morphology		
Cr ₂ O ₃ /SiO ₂ /TiO ₂	Cr_2O_3 Bal. SiO_2 5.0% TiO_2 3.0% Fused & Crushed	C-650.01 C-650.25 C-650.45	-25 +5 μm -45 +22 μm -63 +15 μm	 Similar to C-604 Better impact resistant than C-604 Good low friction features Grind only, use silicon carbide or diamond wheels. 		
Cr ₂ O ₃ TiO ₂ 97/3	Cr ₂ O ₃ Bal. TiO ₂ 3.0% Reaction Sintered	C-667.151 C-667.25	-30 +10 μm -45 +22 μm	 Similar to C-604 Lower Hardness than C-604 but better toughness than C-604 Used in wear applications where more toughness is needed Grind only, use silicon carbide or diamond wheels. 		

CHROME OXIDE					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Cr ₂ O ₃ TiO ₂ 75/25	Cr ₂ O ₃ Bal. TiO ₂ 25.0% Reaction Sintered	C-670.151 C-670.25	-30 +10 μm -45 +22 μm	 Similar to C-667 Lower Hardness than C-667 but better toughness than C-667 Used in wear applications where more toughness is needed Grind only, use silicon carbide or diamond wheels. 	
Cr ₂ O ₃ TiO ₂ 60/40	Cr ₂ O ₃ Bal. TiO ₂ 40.0% Reaction Sintered	C-677.151 C-677.25	-30 +10 μm -45 +22 μm	 Similar to C-670 Lower Hardness than C-670 but better toughness than C-670 Used in wear applications where more toughness is needed Grind only, use silicon carbide or diamond wheels. 	

COBALT BA	COBALT BASED ALLOYS					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
T-800	Mo 28.0% Cr 17.0% Si 3.5% Co Bal. Gas Atomized	M-499.22 M-499.33	-45 +10 μm -53 +20 μm	 HVOF, Plasma Excellent sliding wear properties from room temperature up to 810°C (1500°F) Good hot hardness, oxidation and corrosion properties Low coefficient of friction Suitable where there is low lubrication Machines readily with Silicon Carbide tools. Similar to Tribaloy® 800 		
T-400	Mo 28.0% Cr 8.0% Si 2.5% Co Bal. Gas Atomized	M-494.25 M-494.33	-45 +22 μm -53 +20 μm	 HVOF, Plasma Excellent wear properties from room temperature up to 810°C (1500°F) Good hot hardness, oxidation and corrosion properties Low coefficient of friction Wet grinding with Silicon Carbide tools Similar to Tribaloy® 400 		

COBALT BA	COBALT BASED ALLOYS				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Alloy 12	Cr 29.0% W 8.0% C 1.5% Co Bal. Gas Atomized	M-481.25 M-481.33 M-481.71 M-481.93	-45 +22 μm -53 +20 μm -90 +45 μm -125 +45 μm	 Equivalent to Stellite® 12 Resistant to wear, galling and corrosion and retain these properties at high temperatures. It is regarded as the industry standard for general-purpose wear resistance applications. Good resistance to impact and cavitation erosion. Examples include valve seats and gates; pump shafts and bearings, erosion shields and rolling couples. 	
Alloy 6	Cr 29.0% W 4.5% C 1.2% Co Bal. Gas Atomized	M-484.25 M-484.33 M-484.71 M-484.93	-45 +22 μm -53 +20 μm -90 +45 μm -125 +45 μm	 Equivalent to Stellite® 6 Resistant to wear, galling and corrosion and retain these properties at high temperatures. It is regarded as the industry standard for general-purpose wear resistance applications. Good resistance to impact and cavitation erosion. Examples include valve seats and gates; pump shafts and bearings, erosion shields and rolling couples. 	
Alloy 1	Cr 29,0% W 13.0% C 2.5% Co Bal Gas Atomized	M-487.25 M-487.33 M-487.71 M-487.93	-45 +22 μm -53 +20 μm -90 +45 μm -125 +45 μm	 Equivalent to Stellite® 1 Resistant to wear, galling and corrosion and retain these properties at high temperatures. It is regarded as the industry standard for general-purpose wear resistance applications. Good resistance to impact and cavitation erosion. Examples include valve seats and gates; pump shafts and bearings, erosion shields and rolling couples. 	

Tribaloy is a registered trade mark of Kennametal Stellite, Inc. Stellite is a registered trade mark of Kennametal Stellite, Inc.

COPPER BA	COPPER BASED ALLOYS				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Pure Copper	Cu Gas Atomized P=High Purity	M-901.17 M-901P.17 M-901.25 M-901P.25 M-901.33 M-901.71	-38 +10 μm -38 +10 μm -45 +22 μm -45 +22 μm -53 +20 μm -90 +45 μm	 HVOF, Plasma, Cold Gas Good electrical and thermal conductivity Non Magnetic Used for build-up and repair of copper based alloys Applications can be found in printing industry. Resistance against corrosive effects of inks Dense coatings Machine with high speed steel or carbide tools. 	
Al-Bronze	Al 9.5% Fe 1.0% Cu Bal. Gas Atomized	M-950.33 M-950.71	-53 +20 μm -90 +45 μm	 HVOF, Plasma Good bearing material Resistant to fretting and galling at low temperatures Easily machined coatings Typical applications include: pump parts, piston guides, seal area's (soft bearing surfaces) Good cavitation resistance Machines with high speed steel or carbide tools. 	
Al-Bronze	Al 10.0% Cu Bal. Gas Atomized	M-952.33 M-952.71	-53 +20 μm -90 +45 μm	 HVOF, Plasma Good bearing material Resistant to fretting and galling at low temperatures Easily machined coatings Typical applications include: pump parts, piston guides, seal area's (soft bearing surfaces) Good cavitation resistance Machines with high speed steel or carbide tools. 	

IRON BASE	D ALLOYS			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
316L Stainless	Cr 17.00% Ni 12.00% Mo 2.5% Si <0.75% C <0.03% Fe Bal. Gas Atomized	M-684.23 M-684.33 M-684.71	-45 +15 μm -53 +20 μm -90 +45 μm	 Good corrosion properties Smooth and easy to machine coatings Good against fretting, cavitation and erosion Good for dimensional restoration and build-up Easily machined with carbide or tool steel.
431 Stainless	Cr 16.0% Ni 2.0% C 0.03% Fe Bal. Gas Atomized	M-687.23 M-687.33 M-687.71	-45 +15 μm -53 +20 μm -90 +45 μm	 Corrosion resistant coating used mostly for repair and wear applications, requiring a hard ground finish The coating may contain martensitic phases Easily machined with carbide or tool steel.
420 Stainless	Cr 13.00% C 0.08% Fe Bal. Gas Atomized	M-642.23 M-642.33 M-642.71	-45 +15 μm -53 +20 μm -90 +45 μm	Martensitic Stainless Steel Repair and Wear resistance Application
Ultra Hard Steel	Cr 32.0% Ni 8.0% B 4.1% C 0.6% Gas Atomized	M-688.23 M-688.33	-45 +15 μm -53 +20 μm	 Hard bearing surfaces: bearing journals, fuel pump rotors, sleeves Resist abrasive grains: cylinder liners, pistons, pump plungers, hydraulic rams, crankshaft bearings Resist fretting (intended or non-intended motion): machine bedways, wear rings, press fits, bearing seats Resist particle erosion (low temperature): exhaust fans, hydroelectric valves Salvage and buildup on grindable steel: mis-machine parts, worn parts High temperature environments to resist oxidation

MOLYBDE	MOLYBDENUM BASED ALLOYS				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
Мо	Mo >99.0% Agglomerated & Sintered	M-801.23 M-801.52 M-801.71	-45 +15 μm -75 +25 μm -90 +45 μm	 Plasma Tough coatings with fair hardness and excellent sliding properties. Useful up to 320°C Fret resistant Bonds well to steel Used for pump parts, piston rings, synchronizing rings, press fits, valves, gears and other similar applications. 	
Mo-25NiS/F	Mo 75.0% NiCrSiB 25.0% Blend	M-855.691	-90 +15 μm	 Plasma Useful up to 350°C Low coefficient of friction Wear resistant coating with excellent sliding properties Bonds well to steel Used for pump parts, piston rings, synchronizing rings, press fits, valves Can be finished by wet grinding. 	
MoB-NiCr	Mo Bal. B 7.5% Ni 20% Cr 5%	M-880.25	-45 +22 μm	 Resistant to high temperature erosion and sliding wear Thermal shock resistance is fair High temperature corrosion is good Excellent non-stick properties Excellent resistance to molten metals such and Aluminum and Zinc 	

NICKEL BA	NICKEL BASED ALLOYS					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
Pure Ni	Ni >99.8% Gas Atomized	M-300.25 M-300.71	-45 +25 μm -90 +45 μm	 Plasma, HVOF Can be used for salvage and build-up of Nickel based alloys that have been damaged or mis-machined Easily machined Coatings with dense and moderate hardness Machines with most grades of cutting tools. 		

NICKEL BA	SED ALLOYS			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
NiCr 80/20	Cr 20.0% Ni Bal. Gas Atomized	M-301.25 M-301.33 M-301.71	-45 +22 μm -53 +20 μm -90 +45 μm	 HVOF, Plasma Good to resist oxidation and corrosion gases up to 980°C (1800°F) Good for general repair and build-up Suitable as ceramic bondcoat Good bonding Easily machined with all grades of cutting tools.
NiAl 95/5	Al 5.0% Ni 95.0% Gas Atomized	M-358.33 M-358.71	-53 +20 μm -90 +45 μm	 Plasma Self bonding to most metallic surfaces Good oxidation and abrasion resistant Recommended for use as oxidation resistant bond coats which can be used below 800°C (1470°F) Good for general repair and build-up Thick coatings are possible.
Alloy 625	Cr 21.0% Mo 9.0% Nb 3.7% Ni Bal. Gas Atomized	M-325.25 M-325.33 M-325.71	-45 +22 μm -53 +20 μm -90 +45 um	 HVOF, Plasma Excellent high temperature oxidation and corrosion properties Good for repair and build-up of similar chemistry super alloy components Useful up to 980°C (1800°F) Machines ready with Silicon-Carbide tools. Similar to Inconel® 625
Alloy 718	Cr 19.0% Fe 18.0% Mo 3.0% Nb+Ta 5.0% Ti 1.0% Ni Bal. Gas Atomized	M-328.25 M-328.33 M-328.71	-45 +22 μm -53 +20 μm -90 +45 um	 HVOF, Plasma Excellent high temperature oxidation and corrosion properties Good for repair and build-up of similar chemistry super alloy components Useful up to: 980°C (1800°F) Machines ready with Silicon-Carbide tools. Similar to Inconel® 718

NICKEL BA	NICKEL BASED ALLOYS					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
Alloy C-276	Cr 15.5% Mo 16.0% W 4.0% Fe 4.0% Ni Bal.	M-341.23 M-341.33	-45 +15 μm -53 +20 μm	 HVOF, Plasma Excellent high temperature oxidation and corrosion properties Good for repair and build-up of similar chemistry super alloy components. Equivalent to Hastelloy C276 		
Alloy C-22	Cr 21.0% Mo 13.5% W 3.0% Fe 4.0% Ni Bal. Gas Atomized	M-342.23 M-342.33	-45 +15 um -53 +20 μm	 HVOF, Plasma Excellent high temperature oxidation and corrosion properties Good for repair and build-up of similar chemistry super alloy components. Equivalent to Hastelloy C22 		
Alloy X	Cr 22.0% Mo 9.0% W 0.6% Ni Bal. Gas Atomized	M-344.23 M-344.33	-45 +15 um -53 +20 μm	 HVOF, Plasma Excellent high temperature oxidation and corrosion properties Good for repair and build-up of similar chemistry super alloy components. Equivalent to Hastelloy X 		

NICKEL S/	F ALLOYS			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
NiCrSiB (50-55HRC)	Ni Bal. Cr 12.0% B 3.0% Si 4.0% C 0.6% Fe 3.75%	M-770.23 M-770.33 M-770.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (59-64HRC)	Ni Bal. Cr 17.0% B 3.3% Si 4.3% C 0.9% Fe 4.0%	M-771.23 M-771.33 M-771.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (35-40HRC)	Ni Bal. Cr 8.0% B 1.9% Si 3.1% C 0.5% Fe 2.5%	M-772.23 M-772.33 M-772.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (55-60HRC)	Ni Bal. Cr 15.0% B 3.0% Si 4.6% C 0.7% Fe 4.5%	M-773.23 M-773.33 M-773.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (30-35HRC)	Ni Bal. Cr 6.3% B 1.2% Si 4.0% C 0.4% Fe 1.75%	M-774.23 M-774.33 M-774.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (35-43HRC)	Ni Bal. Cr 10.0% B 1.8% Si 3.2% C 0.45% Fe 2.5%	M-775.23 M-775.33 M-775.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.

NICKEL S/	F ALLOYS			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
NiCrSiB (45-50HRC)	Cr 13.0% B 2.5% Si 3.4% C 0.45% Fe 4.5%	M-776.23 M-776.33 M-776.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (58-64HRC)	Ni Bal. Cr 17.0% B 3.8% Si 4.0% C 0.6% Fe 3.0% Cu 2.5% Mo 3,3%	M-778.23 M-778.33 M-778.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (55-58HRC)	Ni Bal. Cr 13.7% B 2.6% Si 3.7% C 0.6% Fe 3.5% W 15.0%	M-781.23 M-781.33 M-781.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCrSiB (57-61HRC)	Ni Bal. Cr 12.5% B 3.0% Si 3.0% C 0.5% Fe 3.8% W 12.5%	M-782.23 M-782.33 M-782.91	-45 +15 μm -53 +20 μm -106 +45 μm	 Self Fluxing type alloy Excellent corrosion and wear resistance Serviceable up to 820°C (1500°F) Coatings are dense and essentially oxide free Machine with carbide tools or grind.
NiCr-SF + WC	WC (CTC) 35% NiCr-S/F 65% (60Rc) Blend	M-733.91	-106 +45 μm	 Blend with Fused Tungsten Carbide Coatings are extremely wear resistant to abrasive grains, hard surfaces, fretting and particle erosion. The most wear resistant of all self fluxing coatings Essentially Cobalt free for stain resistance.

NICKEL S/	NICKEL S/F ALLOYS					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
NiCr-SF + WC-Co	WC-Co (A/S) 35% NiCr-S/F 65% (60Rc) Blend	M-735.93	-125 +45 μm	 Blend with Agglomerated WC-Co Tungsten Carbide Coatings are extremely wear resistant to abrasive grains, hard surfaces, fretting and particle erosion. The most wear resistant of all self fluxing coatings Essentially Cobalt free for stain resistance. 		
NiCr-SF + WC	WC (CTC) 35% NiCr-S/F 65% (50Rc) Blend	M-737.91	-106 +45 μm	 Blend with Fused Tungsten Carbide Coatings are extremely wear resistant to abrasive grains, hard surfaces, fretting and particle erosion. The most wear resistant of all self fluxing coatings Essentially Cobalt free for stain resistance. 		

TITANIUM				
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
Pure Ti	Ti HDH CP (Blocky)	M-222.91 M-222.995	-106 +45 μm -180 +75 μm	 In accordance with ASTM F1580- 12 VPS, LPPS Good corrosion resistance against salt water, Cl containing solutions and oxidizing acid solutions Material for biomedical applications.
Pure Ti 6Al 4V	Al 6.0% V 4.0% Ti Bal. HDH CP (Blocky)	M-223.91 M-223.995	-106 +45 μm -180 +75 μm	 In accordance with ASTM F1580- 12 VPS, LPPS Good corrosion resistance against salt water, Cl containing solutions and oxidizing acid solutions Material for biomedical applications.

Pure Ti	Ti PREP (Spherical)	M-224.23 M-224.91	-45 +15 μm -106 +45 μm	 In accordance with ASTM F1580- 12 VPS, LPPS Good corrosion resistance against salt water, CI containing solutions and oxidizing acid solutions Material for biomedical applications.
Pure Ti 6Al 4V	Al 6.0% V 4.0% Ti Bal. PREP (Spherical)	M-225.23 M-225.91	-45 +15 μm -106 +45 μm	 In accordance with ASTM F1580- 12 VPS, LPPS Good corrosion resistance against salt water, CI containing solutions and oxidizing acid solutions Material for biomedical applications.

TITANIUM OXIDE						
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
TiO ₂	TiO ₂ > 99.5%	C-408.01	-25 +5 µm	Moderate abrasive wear resistance		
	Fused & Crushed	C-408.25	-45 +22 μm	 Lower hardness than Al₂O₃-TiO₂ coatings 		
		C-408.45	-63 +15 μm	 Decorative "black" coatings Slightly conductive; Static electricity does not build-up on coating surface Soluble in alkalis and sulfuric acid Coatings can be ground and/or lapped to very smooth finishes. 		

TUNGSTEN	CARBIDE			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
WC-Ni 88/12	Ni 12.0% WC Bal. Agglomerated & Sintered	K-611.17 K-611.23	-38 +10 μm -45 +15 μm	 Plasma, HVOF Hard, tough, dense coatings with good abrasion, erosion and sliding wear resistance. Very fine as sprayed surfaces possible Better corrosion resistance the WC-Co coatings Useful up to 480°C (900°F) Excellent low temperature wear properties Diamond wet grinding.
WC-Ni 83/17	Ni 17.0% WC Bal. Agglomerated & Sintered	K-612.17 K-612.23	-38 +10 μm -45 +15 μm	 Plasma, HVOF Hard, tough, dense coatings with good abrasion, erosion and sliding wear resistance. 17% Ni Coatings have better toughness that 12% Ni coatings Very fine as sprayed surfaces possible Better corrosion resistance the WC-Co coatings Useful up to 480°C (900°F) Excellent low temperature wear properties Diamond wet grinding.
WC-NiCr 85/10/5	Ni 10.0% Cr 5.0% WC Bal. Agglomerated & Sintered	K-617.23	-45 +15 μm	 Coatings made from K-617protect against fretting, abrasion and hammer (impact) wear and sliding wear. K-617 has been designed to produce coatings that are wear resistant in a seawater environment. The use above 500 °C (930 °F) is not recommended. As K-617 is cobalt-free, it can also be used in radioactive environments. K-617 coatings have a higher hardness than tungsten carbide – nickel coatings as a consequence of the hardening effect of chromium in the binder alloy, but toughness is reduced. The hardness of a K-617 coating is slightly lower than that of a tungsten carbide-cobalt-chromium coating.

TUNGSTEN	CARBIDE			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
WC-Co 88/12	Co 12.0% W Bal. Agglomerated & Sintered	K-624.15 K-624.17 K-624.23 K-624.33	-30 +5 μm -38 +10 μm -45 +15 μm -53 +20 μm	 Plasma, HVOF Medium WC Hard, dense coatings with good abrasion, erosion and sliding wear resistance. Low oxidation and corrosion resistance Useful up to 480°C (900°F) Excellent low temperature wear properties Diamond wet grinding.
WC-Co 83/17	Co 17.0% WC Bal. Agglomerated & Sintered	K-674.15 K-674.17 K-674.23	-30 +5 μm -38 +10 μm -45 +15 μm	 HVOF Course WC Higher Co level then K-624 results is improved toughness, impact strength and ductility Useful up to 480°C (900°F) Low oxidation and corrosion resistance Diamond wet grinding.
WC-Co-Cr 86/10/4	Co 10.0% Cr 4.0% WC Bal. Sintered & Crushed	K-646.17 K-646.23	-38 +10 μm -45 +15 μm	 HVOF and APS The CoCr matrix shows higher corrosion and abrasion resistance that the Co matrix materials Usable in wet corrosive environments Dense, smooth coatings with fine microstructure and high bond strengths Used for Hard Chrome Replacement Diamond wet grinding.
WC-Co-Cr 86/10/4	Co 10.0% Cr 4.0% WC Bal. Agglomerated & Sintered	K-647.15 K-647.17 K-647.23 K-647.33	-30 +5 μm -38 +10 μm -45 +15 μm -53 +20 μm	 HVOF Medium WC The CoCr matrix shows higher corrosion and abrasion resistance that the Co matrix materials Usable in wet corrosive environments Dense, smooth coatings with fine microstructure and high bond strengths Used for Hard Chrome Replacement Diamond wet grinding.

TUNGSTEN	CARBIDE			
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications
WC-Co-Cr 86/10/4	Co 10.0% Cr 4.0% W Bal. Agglomerated & Sintered	K-648.15 K-648.17 K-648.23	-30 +5 μm -38 +10 μm -45 +15 μm	 HVOF Fine WC The CoCr matrix shows higher corrosion and abrasion resistance that the Co matrix materials Usable in wet corrosive environments Dense, smooth coatings with fine microstructure and high bond strengths Used for Hard Chrome Replacement Diamond wet grinding.
WC-Co-Cr 86/10/4	Co 10.0% Cr 4.0% W Bal. Agglomerated & Sintered	K-649.15 K-649.17 K-649.23	-30 +5 μm -38 +10 μm -45 +15 μm	 HVOF Sub-Micron WC The CoCr matrix shows higher corrosion and abrasion resistance that the Co matrix materials Usable in wet corrosive environments Dense, smooth coatings with fine microstructure and high bond strengths Used for Hard Chrome Replacement Diamond wet grinding.
WC-CoCrNi 85/9/5/1	Co 9.0% Cr 5.0% Ni 1.0% WC Bal.	K-665.17 K-665.23	-38 +10 μm -45 +15 μm	 HVOF Medium WC The CoCrNi matrix shows higher corrosion and abrasion resistance that the Co and CoCr matrix materials Usable in wet corrosive environments Dense, smooth coatings with fine microstructure and high bond strengths Used for Hard Chrome Replacement Diamond wet grinding.

TUNGSTEN CARBIDE					
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications	
WC-CrC-Ni 73/20/7	Ni 7.0% CrC 20.0% W Bal. Agglomerated & Sintered	K-607.15 K-607.17 K-607.23 K-607.33	-30 +5 μm -38 +10 μm -45 +15 μm -53 +20 μm	 HVOF Fine WC Useful up to 700°C Higher corrosion, oxidation and chemical resistance than other WC based coatings Smooth coating with fine micro structure High bond strength Diamond wet grinding. 	

YTTRIUM OXIDE							
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications			
Y ₂ O ₃	Y ₂ O ₃ 99,5% Agglomerated and Sintered	C-200.45 C-200.71	-65+15 μm -90+45 μm	 Stable at high temperatures Plasma etch and erosion resistance on surfaces exposed to reactive plasma gases in semiconductor manufacturing systems, such as vacuum chamber walls and other components. Used for protection of graphite sheets in the hard metal industry Max. operating temperature in air 2200 °C (on graphite 1550 °) 			

ZIRCONIUM OXIDE							
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications			
ZrO ₂ -Y ₂ O ₃	ZrO ₂ Bal. Y ₂ O ₃ 8.0% Spray Dried	C-295.45 C-295.71 C-295.92	-63 +15 μm -90 +15 μm -125 +45 μm	 Excellent thermal barrier properties Stabilizes during spray process Useful up to 1300°C (2450°F) Very good thermal shock resistance Thick, high porosity coating possible. 			

ZIRCONIUM OXIDE						
Powder Type	Nom.Composition	FST p/n	Size Range	Typical Properties and Applications		
ZrO ₂ -Y ₂ O ₃	ZrO_2 Bal. Y_2O_3 8.0% Fused & Crushed	C-297.02 C-297.23	-22 +5 μm -45 +15 μm	 Excellent thermal barrier properties Stabilizes during spray process Useful up to 1300°C (2450°F) Very good thermal shock resistance. Used for DVC (Dense Vertically Cracked) Coatings 		
ZrO ₂ -22MgO	ZrO ₂ Bal. MgO 24.0% Fused & Crushed	C-234.25 C-234.71	-45 +22 μm -90 +45 μm	 Good thermal barrier properties Resistant to molten metals Good particle erosion resistance Useful up to 900°C . 		
ZrO2-5CaO	ZrO2 Bal. CaO 5.0% Fused & Crushed	C-241.25 C-241.71	-45 +22 μm -90 +45 μm	 Thermal barrier coatings used in rocket and turbine engine combustion chambers and other hot section components. Lining for special purpose crucibles to prevent contamination of the molten contents. Abrasive wear resistant coatings for diesel engine pistons, valves, cylinder heads and coatings for casting molds and troughs up to approximately 900 °C. Coatings resist wetting and the corrosive effects of molten metal. 		

Notes	

28 2020